

Pathology in construction... where do we stand?

WP2: Building pathology

ELIOS II forum meeting-1 Brussels – 2012 March 20

- Call of tender
- Key questions
- Definitions, concepts, types of risks
- An example
- The proposal
- Planning
- Questions

WP2 addresses the following requirements of the call for tender

"Development of an EU-wide knowledge base on quality indicators in construction and building pathology"

Objectives:

- To develop indicators and a mechanism to monitor the evolution of <u>quality in construction</u> and <u>pathology</u> related to construction design and techniques and the integration of eco-technologies;
- To make this information available in a pilot database.

'Building quality'

Subjective: 'Quality of a building' is the result of good design, good products, good workmanshp, correct installation.

'Building quality'

Subjective: 'Quality of a building' is the result of good design, good products, good workmanship, correct installation.

Objective: 'Quality' is a series of criteria, characteristics or performances...:

- Clients' specifications;
- Compliance with building regulations and standards/norms;
- Qualification of construction professionals, companies, persons;
- Certification of products, processes;
- State of the art

'Building pathology'

Pathology: the study and diagnosis of disease.

'Building pathology'

Pathology: the study and diagnosis of disease.

Building Pathology : the study and diagnosis of defects and damages of a building

 Provides a detailed knowledge of how buildings are constructed, used, occupied and maintained, and the various mechanisms by which their structural, material and environmental conditions can be affected.

Pathology and insurance

 In order to underwrite a risk, the insurer deals with technical information to assess the risk, helped by his knowledge of the corresponding and/or foreseen pathology.

- In order to underwrite a risk, the insurer deals with technical information to assess the risk, helped by his knowledge of the corresponding and/or foreseen pathology.
- So: the pathology knowledge is supposed to be necessary to know the risks and make a better risk assessment.

 What information on building defects and damages is required by insurers in order to assess the risks for what kind of insurances/ guarantees?

- What information on building defects and damages is required by insurers in order to assess the risks for what kind of insurances/ guarantees?
- Which risks?

- What information on building defects and damages is required by insurers in order to assess the risks for what kind of insurances/ guarantees?
- Which risks?
- How, and for what purpose, do they use information on pathology:
 - Qualitatively: for defining preventive actions, building control and inspection items;
 - Quantitavely: for establishing the risk coverage and insurance premium.

a) <u>Deficiencies</u> in the design or <u>defects</u> in the work/product and possible <u>damages</u> and consequential <u>losses</u> resulting from that;

- a) <u>Deficiencies</u> in the design or <u>defects</u> in the work/product and possible <u>damages</u> and consequential <u>losses</u> resulting from that;
- b) Risk that the built or installed product will not function satisfactory for a certain period of time;

Types of risks

- a) <u>Deficiencies</u> in the design or <u>defects</u> in the work/product and possible <u>damages</u> and consequential <u>losses</u> resulting from that;
- b) Risk that the built or installed product will not function satisfactory for a certain period of time;
- c) Risk of non-performance of the installation/ building/ equipment (in France: only 'fitness for purpose', the habitability or useability of the building;)

Types of risks

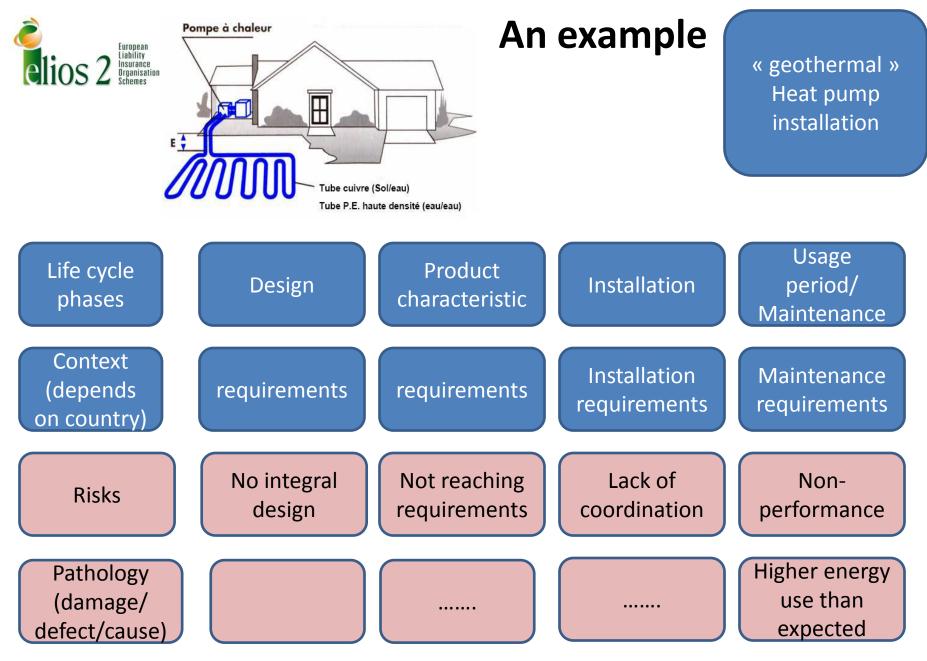
- a) <u>Deficiencies</u> in the design or <u>defects</u> in the work/product and possible <u>damages</u> and consequential <u>losses</u> resulting from that;
- b) Risk that the built or installed product will not function satisfactory for a certain period of time;
- c) Risk of non-performance of the installation/ building/ equipment (in France: only 'fitness for purpose', the habitability or useability of the building;)
- d) Inappropriate maintenance and operation, so that a certain performance (for example energy consumption) cannot be achieved until the end of the guarantee period; or even healthy/safety risks.

Types of risks

- a) <u>Deficiencies</u> in the design or <u>defects</u> in the work/product and possible <u>damages</u> and consequential <u>losses</u> resulting from that;
- b) Risk that the built or installed product will not function satisfactory for a certain period of time;
- c) Risk of non-performance of the installation/ building/ equipment (in France: only 'fitness for purpose', the habitability or useability of the building;)
- d) Inappropriate maintenance and operation, so that a certain performance (for example energy consumption) cannot be achieved until the end of the guarantee period; or even healthy/safety risks.
- e) Gradual disruption;

Example: Heat pump

Quick scan from literature:


- In general defects have not to do with the product or the installation, but with the design and esp. the whole concept for heating, ventilation, cooling and the building quality → lack of integral design and lack of coordination of installation disciplines;
- There are some papers on defects and user problems (higher energy use than expected), but no data bases with defects, or how frequent these defects occur.

Example: Heat pump

Specific design problems mentioned:

- Installation is not getting warm enough:
 - The heat pump is too small;
 - The installation is not fit for low temperatures;
 - The natural heat source is overloaded;
- The installation is using too much energy:
 - The heat pump is too small;
 - The desired delivery temperatures are too high;
 - The natural source is overloaded;
- The operating life time is too short:
 - The heat pump is too big;
 - The heat pump can only switch on and off and has no intermediary steps (different compressors);
 - The heat pump is continuously overloaded.

ELIOS II

Insurance concepts

- In insurance a claim is defined by a 'technical cause'.
- If there are two causes for the same damage, it constitutes two claims (and therefore two deductibles).
- → Database should contain information on damages and 'technical causes'.

Structure of database, example

Claim	Name	 Date of claim	Begin- ning / End of construc- tion	Damage	Defec	ctive part	Technical cause	Insurance info			
ID	of risk / owner				Type of product				Name insure d		
01				Fire - Whole building burnt			Wires not protected from rain. Installer forgot to install them in some places.				
02				Collapse of the building		the Column n°25 in the second	Effective quality of the wood does not comply with requirements : 10 MPa Some assembly reinforcements foreseen in the design where missing				

Proposal

- 1. State of the art on quality in construction and building pathology
 - Definition of 'construction quality and 'building pathology'';
 - Review of existing research work and data sources;
 - Selection of 10 eco-technologies
 - Assessment of the value of the existing research work, data sources
- 2. Needs and criteria to develop an EU database on quality and pathology indicators
 - Analysis of the needs and of the criteria
 - Program of requirements for the pilot database
- 3. Setting up a format for the database, validation, data requirements
- 4. Development, testing and validation of pilot database

	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12
WP2- Indicators and mor	nito	rin	g o	of q	ua	lity	an	d p	oat	hol	og	y
2.1 State of the art on quality in construction and building												
pathology												
2.2 Needs and criteria to develop												
an EU-wide database on quality and pathology indicators												
2.3 Format, informatics requirements												
2.4 Developing, testing and validating the pilot database												
2.5 Pilot database operational												
2.6 Updating the database												

- Access to information on building pathology with insurers
- Participation of insurers and stakeholders in round table discussions